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Abstract. A reacting gas flows into a metal, thin-walled, tube which has a catalytic coating on its inner surface. A 
strong, temperature-dependent, exothermic reaction occurs giving a local hot spot. It is assumed that the surface 
temperature is controlled by heat conduction through the metal wall, heat transfer into the gas being negligible. A 
standard approximate technique is used to derive an integral equation which relates the mass transfer at the wall in 
the Blasius boundary layer to the wall temperature. A second integral equation is derived from the heat-conduction 
problem for the metal wall, and the coupled equations are solved numerically. The maximum temperature rise at 
the wall is found to be significantly higher than that obtained when a fully developed flow passes over a catalytic 
coating. 

1. Introduct ion  

Catalytic-wall reactors are often used when the desired gas-phase reaction is highly ex- 
othermic,  for example ,  in the oxidation of naphtalene.  In such a reactor  a thin layer of  
catalyst is coated on the inner surface of a metal  tube and hence the heat  is produced at the 
wall where it can be efficiently removed.  In the conventional fixed-bed catalytic reactor  it is 
somet imes difficult to remove  heat  f rom the interior of the bed and so, to retain t empera ture  
control,  the inlet concentrat ion of the reacting gas has to be reduced. A summary  of the 
advantages of  catalytic-wall reactors over  fixed-bed reactors has been given in review articles 
by Smith et al. [1] and Carber ry  [2]. These advantages include greater  efficiency of  catalytic 
use. The interior of  the catalytic-wall reactor  may be empty,  as in the monoli th converter  
used in car exhausts,  or  filled with inert beads to increase mixing. In this latter case, 
however ,  there may  be an unacceptable  pressure drop (Boersma et al. [3]). We shall 
consider the case where the tube is empty,  at least in the inlet region. 

In an ideal situation the operat ion is isothermal,  so that  the catalytic surface is used 
uniformly, but this is not always possible since 'hot  spots '  may occur on the metal  wall where 
the unreacted gas first comes into contact with the catalyst. Such hot spots are undesirable 
since they lead to local degradat ion of the catalyst and may also trigger off some unwanted 
reaction. It  is therefore  important  to know the tempera ture  rise in such a hot spot and its 
spatial extent.  These quantities will be determined by two main factors, (1) the rate  of  
product ion of  heat  at the wall and (2) the efficiency with which heat  can be removed  through 
the metal  wall. The key factor in (1) is the mass transfer to the wall which is influenced by 
the local gas-velocity field. In a previous paper  [4], we found the wal l - temperature  
distribution when a fully developed Poiseuille flow passed over  a catalytic coating. In this 
paper  we use a very similar method  to determine the wal l- temperature  profile in an inlet 
region where the flow is of  Blasius type. In this latter case the mass transfer  to the wall is 
more  efficient and consequently a greater  t empera ture  rise occurs. For  our  parameters  the 
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t empera ture  rise for the developing flow is about  two and a half times the t empera ture  rise 
for the fully developed case. In the special case of an infinite reaction rate the wall- 
t empera ture  profile has a universal form and an explicit formula  for the t empera ture  rise is 

derived. 
The  inlet hot-spot  t empera ture  profile is important  because in practice the whole of the 

inner surface of the tube wall will be coated. Moreover  if the coating was absent in the 
entry-length region, approximately  30 cms in our case, this length of reactor  would essential- 
ly be  wasted. 

The  efficiency with which heat  can be removed  depends on the thickness of  the metal  wall 
and the efficiency of  the heat- transfer  mechanism on the outer  surface of  the reactor.  We 
shall assume here that the outer  surface has a constant t empera ture  which corresponds to the 
most  efficient heat-transfer mechanism. 

The study was mot ivated by experimental  investigations carried out at Imperial  Chemical 
Industries,  Runcorn,  U.K.  

2.  T h e  m a t h e m a t i c a l  m o d e l  

We consider the steady flow of  a single reacting gas with concentrat ion C O and tempera ture  
T O into a tube of internal radius a. The  metal  wall of the tube is of  thickness 1. We shall 
assume that 1 ~ a so that we can use local plane geometry.  The coordinate x is measured 

along the pipe and entry-flow region starts at x = 0. The coordinate y is measured f rom the 
gas /meta l  interface. We assume that  the gas velocity is u 0 at x = 0, where u 0 is a constant. 
The  outer  surface of the tube is maintained at a constant t empera ture  T O as is the ' leading 

edge '  surface x = 0. 
We scale the x-coordinate  with respect to l, the y-coordinate  with respect to l Re -1/2 

(where Re  = luo/v is a Reynolds number  for the flow and v is the viscosity) and the 
x -componen t  of velocity with respect  to u 0. Then the boundary- layer  equations governing 
the gas flow in the entry region may be written in the standard dimensionless form 

u ~ + v Oy OY 2 , (1) 

au  av 
- -  + = O ,  ( 2 )  
ax  

where u = 1 at x = 0, y > 0; u---> 1 as y---> 0% x > 0 and u = v = 0 on y = 0, x > 0. The solution 
of these equations gives the Blasius profile [5], for which the s t ream function is 

O(x, y) = x1/2F(y/xI/2) . (3) 

The corresponding velocity components  in the x- and y-directions are given by 

&o &0 
v - (4) 

u ay ' ax 

The function F ( y / x  i n )  is tabulated in Schlichting [5] and in particular,  near  y = 0, u(x, y) 
and q,(x, y) may be written in the approximate  form 



u(x, y) = "yy/x 1/2 , 
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~b(x, y) = yy2/2xl /2 ,  (5) 

where 3' = 0.33. This approximate result will be used later, when we use the Lighthill method 
[6] to estimate the mass transfer at the wall. 

The equation governing the gas concentration in the concentration boundary layer on 
y = 0 can be written in the dimensionless form 

Oc 0c 1 02c 
u -~x + v Oy Sc Oy 2 ' (6) 

where Sc = v /D  is the Schmidt number.  Here D is the diffusion coefficient and c is the gas 
concentration scaled on C 0. The boundary conditions to be satisfied by c(x, y) are 

c = l ,  x = 0 ,  y > 0 ,  

c---->l, y--->~, x > 0 ,  (7) 

3C =Re-1/2A(Tw)  c on y = 0 ,  x / > 0 ,  
Oy 

where Tw(x ) is the unknown wall temperature. The third equation in (7) expresses the 
condition that the mass flux of gas at the wall equals the rate of reaction at the wall. We have 
assumed a first-order reaction. The temperature dependence of the rate of reaction is 
determined by an Arrhenius factor so that 

E 1 
A ( T ) = A 0 e x p [ - ~ (  T 1 )  ] ,  (8) 

where E is the activation energy, R is the gas constant and A = A 0 when T = T 0. Here T O is 
the absolute temperature of the outer surface of the metal tube. Note that if r 0 is the true 
dimensional reaction rate at temperature To, with dimension LT -1, then A 0 = lro/D. In 
practice r o is given, so this equation determines A o. 

It is convenient to introduce a dimensionless temperature 0 defined by 

E 
0 = ( r -  r0 ) ,  

/Xl 0 
(9) 

so that A(T~) in (7) is replaced by 

A(0~) = A0 exp[ 1 + ~ 0 w  ] , (10) 

where e = RTo /E  and Ow(x ) is the dimensionless temperature at the gas/metal  interface 
y = 0 .  

If we regard Ow(x ) as given, then (6), (7) can be solved to determine c(x, y) and the mass 
flux at the wall. A good approximation to the mass flux at the wall may be obtained by using 
the Lighthill method [6]. In this method,  first developed for the analogous heat-transfer 
problem, the near-wall velocity field is used in (6) rather than the complete Blasius profile. 
The error in this method is less than three percent if S c :  > 0.7. If we use x and ~b as 
independent variables, then equation (6) can be written in the Von Mises form 



256 S.A. Thornham and J.A.  King-Hele 

Oc 1 a ( 0~0 ) 
O-~=Sc  &O u . (11) 

Using the forms for u and qJ close to the wall given in (5), equation (11) becomes 

Oc 1 ( 2 y ' ~ ' 2  0 ( ) 
Ox Sc \ ~ /  0-0 01/2 Oc - -  = - -  ~ . (12) 

If we introduce the new variables ~ = V ~  x3/4/3 Sc, 77 = 0 I/2, equation (12) takes the simple 
form 

Oc O 2c 
= (13) ~/-~ Or/2 �9 

The boundary conditions (7) become 

c = l ,  ~ = 0 ,  ~ />0 ,  

c---~l, 7/--->~, ~ > 0 ,  (14) 

OC (6~ SC) 1/3 -1/2 
= - - - ~ ,  Re h(0w(~))c, 7/= 0.  

The boundary-value problem can now be formally solved in terms of an integral equation. If 
we introduce the Laplace transform 

( (P '  77) = f o  c(~, ~/) e -p~ dE,  (15) 

then (13) becomes 

d2( 
dn-- 5 = 7/(p( - 1).  

The solution which satisfies the first two boundary conditions in (14) may be written in the 
form 

1 d (  Ai (~pl /3)  
1_ + pl/3 (p ,  0) (16) 

( (p ,  r/) = P - -  d--~ Ai'(0) ' 

where Ai is the Airy function and Ai' is its derivative. We now apply this result on ~7 = 0 
and, using the convolution theorem, obtain 

1 f e  Oc 
c ( s  r(k)31'3  Jo ( s  s ~-~ ( ~ , 0 ) d ~ ' .  (17) 

Returning to the original dimensionless x, y variables, and using (7) to eliminate c(x, 0) in 
favour of Oc/Oy on y = 0, we obtain 

f(x) Re I/2 1 ( 3 ~l/a fo s3/4)-2/3 Us a ( 0 . ( , ) )  = 1 -  /(S)(X3/4-- ' (18) 
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where f(x) = (ac/ay)r= o is the dimensionless diffusive mass flux at the wall. Equation (18) is 
a weakly-singular Volterra integral equation of the second kind for the function f(x) given 
ow(x). 

To determine a second relationship between O,(x) and f(x) we need to examine the 
temperature field in the metal produced by the heating at the gas/metal interface y = 0. The 
exact condition which holds at this interface is that the jump in heat flux there equals the rate 
of production of heat due to the chemical reaction. However, the conductivity of the metal K 
exceeds the conductivity of the gas k by a factor of order 400 and consequently we expect 
that most of the heat generated will flow into the metal. This approximation can be checked 
afterwards. 

The temperature in the metal wall satisfies the equation 

12o o2o 
+ --0,  (19) 

where X = x and Y = y Re a/2. Note that Y is found by scaling the real physical coordinate 
perpendicular to the wall with respect to l. 

If the heat transfer into the gas is neglected compared with that into the wall then the flux 
of heat into the metal equals q times the mass flux at the wall, where q is the heat of 
reaction. Then the boundary conditions on O(X, Y) are 

00 
aY  = Q Rel/2f(x) ' Y = 0 ,  X > 0 ,  

0 = 0 ,  Y = - I ,  X > 0 ,  

0---~0, X--* ~ ,  -1  ~< Y~<0, 

0 = 0 ,  X = O ,  -I~<Y~<O, 

(20) 

where Q = qDCoE/KRT2o, and q is the heat of reaction. The parameter Q is therefore a 
measure of the strength of the heating effect of the chemical reaction. The last boundary 
condition in (20) assumes that the 'leading edge' of the tube is maintained at a temperature 
7"0. 

The solution for O(X, Y) is 

O(X, Y) = Q Re1/2 f o  2~--~-- f (X ' ){  G(X' - X, Y) - G(X' + X, Y)} d X ' ,  

where 

G(X, Y )=  Real{lncoth2( 4 (X  + iY))}  . 

(21) 

(22) 

Thus, in particular on Y = 0, 

Ow(X) = a Re1/2 I ;  
2 ~  Jo f (X ' )  In 

co th  2 ~ ( X ' - X )  

qT 
coth 2 ~- (X' 

d X '  . (23) 

This is an equation for Ow(X ) given f (X) .  
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Fig. I. The graph of Ow(x)/Re 112 Sca/2Q as a function of x for A 0 = 7.2 (e = 0.15, Q = 0.37, Sc = 0.75), and A 0 = oo. 

We have solved the coupled integral equations (18), (23) numerically, by an iterative 
technique very similar to that used in [4]. We initially took Ow(x ) = 0, and solved (18) for 
f(X) (see, for example, Baker [7]). We then formed a new approximation to ON(x) from (23) 
which was substituted back into (18). Convergence was obtained after about six iterations. 
The graph of Ow(x) for the case e = 0.15, A 0 = 7.2, Q = 0.37, Sc = 0.75 and Re = 120 is shown 
in Fig. 1. These are the parameter values associated with the experiments which motivated 
this study. The scaling of O,,(x) with respect to Q Re a/2 Sc I/3 was suggested by the 
infinite-reaction-rate case, A0---~ ~, which we discuss next. 

. T h e  s o l u t i o n  for  an  inf in i te  r e a c t i o n  rate  

In the case Ao--> ~ the concentration at the gas/metal  interface is zero. The function f(x) 
can then be determined from the limiting form of (18), 

/ 1 " "  ~ \ 1 / 3  
2 O"y ~C fof(S)(X3/4-s3/4)-2/3ds=F(g)l~ ) , 

which can be integrated to give 

x/-JF( ~ ) ( 9 4 s c ) a / 3  f(x) = 2r x-a/2 

Thus the corresponding wall temperature O~(x) is given by 

O:(x) V~F(2)  "9 Sc'1'3 l [ c ~  (X ' -x) ) t  
In ~ . . . .  dX '  

- 4 ~ r  z QRe'/2(~-~) fo~x'  c o t h 2 ( ;  (X, + x)) 

(24) 

(25) 

(26) 
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This expression shows that for  an infinite reaction rate the shape of  the temperature  profile 
has a universal character and the magnitude of the temperature  rise depends only on the 
single parameter  Q Sc x/3 Re x/2 The graph of Ow(X ) is shown in Fig. 1, and shows that,  for 
the numerical values chosen, the results for a finite reaction are very comparable with those 
for the infinite reaction rate. The numerical results also indicate, as expected, that the 
highest temperatures will be reached with an infinite reaction rate and the maximum 
temperature  rise will be approximately 0.29Q Re 1/2 Sc 1/3. 

We note,  in conclusion, that this result is based upon the Lighthill approximation valid for 
Sc I> 0.7. The validity of this approximation can be tested in the case of infinite reaction rates 
since (6) has an exact similarity solution and the solution of the analogous heat-transfer 
problem has been widely studied (see Stewartson [8]). Using the results given in [8], with the 
Prandtl number  replaced by the Schmidt number,  we find that the ratio of the approximate 
dimensionless mass flux, given by (25), to the exact mass flux is 1.02/s Sc 1/3 where s, a 
function of Sc, is the Reynolds analogy factor. This ratio is a slowly varying function of Sc 
for Sc t> 0.7. It tends to unity as Sc----> oo and is less than 1.04 when Sc = 0.6. 

4. Conclusions 

We have assumed that the heat transfer into the gas stream is small compared with that into 
the metal. If ~ is the thickness of  the thermal boundary layer, this approximation is valid 
provided that 

k/ 
~-~ ~ 1. (27) 

where K and k are the metal and gas thermal conductivity, respectively, with K = 400k. The 
thickness of the thermal boundary layer on the gas/metal  interface is of order  8 = 
l Re -I/2 Sc 1/3 if we take the thermal diffusivity a to equal D. For  Re = 120 and Sc = 0.75 we 
deduce that kl/K8 = 0.03, which clearly satisfies (27). 

In our previous paper  [4] we showed that the maximum temperature  rise when a fully 
developed flow passes over a catalytic coating is, in dimensional terms, 

q D C  0 ( Uo12 ~ 1/3 
(ar) o = 0.55 - - -k- -  (28) 

In the case of developing flow, the corresponding result, from Fig. 1, is 

qOCo(~)l/2(~ 1/3 
(AT)o = 0.29 ~ \ ~ /  . (29) 

The ratio of these temperatures  rises is 

( U_~ ) II6 
(AT)o = 0.53 = 2 .4 ,  (30) 
(AT)vo 

if, for example, l = a18 and luo/v = 120. Since the reaction rate is often a sensitive function 
of the temperature  this result shows that very fast reactions must be expected in the 
entry-flow region, with a hot  spot of characteristic length I. 
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